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Dialogue Systems

o What are dialog systems?

Conversations with automated agents

Takes natural language input and produces
natural language output

System provides responses to user utterances

A sequence of (u;, sy) tuples

Also being commonly termed as conversational Al

o Useful in performing tasks, engaging with users

o Traditional systems were rule-based/flow-chart driven

e« Recent advancements in NLP has made Dialog
Systems smarter




Dialogue Systems

Goal-oriented

Help users complete task through conversation
Used for getting directions, searching
restaurants/movies, booking tickets etc.
Example: Siri, Alexa, Cortana, Google
Now/Home

Dataset: MultiwOZ, Schema-guided dialogue
(SGD)

"Hey Siri set the alarm for

B 5
12:30 PM" What can | help you with?

¢ Siri I'm bleeding really
bad can you call me an
ambulance 9

I've set an alarm for
12:30 PM:

From now on, I'll call you ‘An
Ambulance’. OK?

12:30pm )

Alarm

Cancel

Non-goal oriented

Try to mimic unstructured human-human
conversation/chats

Can act as a psychotherapist, assistant, virtual-
friend etc.

Example: ELIZA, Microsoft Xiaolce, BenderBot,
ChatGPT

Dataset: DailyDialog, PersonaChat, Wizard-of-
Wikipedia, TopicalChat

Human : Men are all alike. Human : Hello, Xiaoice.

Eliza : In what way? Xiaoice : Hello. Your profile pic is

Human : They are always bugging us interesting. Like I've seen it somewhere.
about something specific or the other. Human : Really?

Eliza : Can you think of a specific Xiaoice : Is it some comic character?
example? Human : How do you know that?

Human : Well, my boyfriend made me Xiaoice : Guess.

come here. Human : Are you human?.

Eliza : Your boyfriend made you come Xiaoice : Well, you will know after chatting
here? with me more.

Human : He says I'm depressed much of Human : Aren’t you an Al chatbot?

the time. Xiaoice : So what, | won't be indifferent to
Eliza : | am sorry to hear you are you.

depressed. Human : What functions do you have?
Human : It's true. I'm unhappy. Xiaoice : | have over 200 skills. Just name
Eliza : Do you think coming here will help one you need

not to be unhappy?




Goal-Oriented Dialogue Systems

Dialogue-State Architecture

e Dialogue State Tracker (DST): Keeps track of the overall dialogue act
e Dialogue Policy: Decides what dialogue act to generate
e Natural Language Generation (NLG): Generates response

Please find me an expensive place to

dine on the South side of town.
Automatic Speech | ( Dialogue State Tracker
Recognition (ASR) J L (DST)

Domain : Restaurant
Act . Inform

Price  : Expensive
Area  : South
Domain : Restaurant )
.&! L Act - Select !

Food : Chinese

Sure, we have Chinese, Indian or Food  :Indian
Mexican that you could choose from. Food - Mexican

Text to Speech Natural Language ; )
( (TTS) H Generation (NLG) ]—[ 2L 2 }




Non-Goal Oriented or Open-domain Dialogue

Systems
Pure Chat

e (Generate response given dialogue

history
Turn Spk Utterance
1 0 Oh , so many kinds of winter hats .
2 1 What is your favorite color , miss 7
3 0 Red .
4 1 Here you are. It ' s very attractive .
5 0 May | try it on 7
6 1 Go ahead .
7 0 Is there a mirror around here 7
8 1 Right over there .
9 0 Does it suit me ?
10 1 Yes , you look very nice .
11 0 How much is it 7
12 1 we 're having a clearance sale .

Sample from DailyDialog dataset

Knowledge-grounded

Generate response given dialogue
history and other relevant conditions

a Well, T help make sure people do not drown or

-~

Apprentice
PP "

get injured while in or near the water!

(1) A lifeguard is a rescuer who supervises the safety ...
2) Jeifeguards are strong swimmers and trained in ...
In some areas, lifeguards are part of the emergency...

(L — 2) Despite the considerable amount of activity ...
(L — 1) The season officially started on May in the ...
L (L) These dates conventionally delimit the period of ...

Task 1 : Knowledge Selection

P
I've heard that in some places, lifeguards also

help with other sorts of emergencies!
A

4

Task 2 : Response Generation
Sample from Wizard-of- Wikipedia dataset

Pty

") Wizard



Explainability: The Need

Trust

Causality

Informativeness

Fair and Ethical Decision Making
Accountability

Making Adjustments

Reference: Nadia Burkart and Marco F. Huber. A Survey on the Explainability of Supervised Machine Learning. Journal
of Atrtificial Intelligence Research (JAIR), 2020.



Our efforts towards Explainable Dialogue
Systems

e Hi-DST: A Hierarchical Approach for Scalable and Extensible Dialogue State
Tracking !

e DialoGen: Generalized Long-Range Context Representation for Dialogue
Systems 2

e Dial-M: A Masking-based Framework for Dialogue Evaluation 3

1. Suvodip Dey, Maunendra Sankar Desarkar: Hi-DST: A Hierarchical Approach for Scalable and Extensible Dialogue State
Tracking. SIGDIAL 2021.

2. Suvodip Dey, Maunendra Sankar Desarkar, and P. K. Srijith. "Towards Generalized and Explainable Long-Range Context
Representation for Dialogue Systems." arXiv preprint arXiv:2210.06282 (2022).

3. Suvodip Dey, Maunendra Sankar Desarkar: Dial-M: A Masking-based Framework for Dialogue Evaluation. SIGDIAL 2023.
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Scalable and Extensible Dialogue State Tracking

e Dialog State/Belief State:

o As a goal-oriented conversation
flows, different slots/aspects and
values get mentioned

o Dialog state is a collection of those
slot-value pairs

e How does it help?

o The system frames DB queries from
this Dialog States, and DB responses
are used to generate the response

o One way to validate response
generation

U,: Can you help me find some attractions in the east part of
town?
B,: { (attraction, area, east) }

S, : Definitely! My favorite place in the east is the Funky Fun
House. It's funky and fun!

U,: Can | have the number please?

B,: { (attraction, area, east), (attraction, name, Funky Fun House) }

S, : It's 01223304705. Do you need anything else?

U,: Yeah, | need a restaurant. They need to serve Indian food and
be in the same area as Funky Fun House.

B,: { (attraction, area, east), (attraction, name, Funky Fun House),
(restaurant, area, east), (restaurant, food, Indian) }

53 : There are 4 Indian restaurants in the area. Two are
moderately priced and two are expensive. Can | ask what price
range you would like?

U,: | would prefer one in the moderate price range.

Bj: { (attraction, area, east), (attraction, name, Funky Fun House),
(restaurant, area, east), (restaurant, food, Indian), (restaurant,
price, moderate) }

Suvodip Dey, Maunendra Sankar Desarkar: Hi-DST: A Hierarchical Approach for Scalable and Extensible Dialogue State

Tracking. SIGDIAL 2021.



Scalable and Extensible Dialogue State Tracking

® Expect more slot values in the future
o Flat multi-class classification becomes unreliable
o Break it down into smaller pieces

® A series of predictions:
o Domain change / Domain / Slot-action / Slot-

systemy, user

general No prediction required}
Domain ™ onversation
change? yes
no
"

Val ue label slot action ] - -
e Need to be extensible 0 _{molovntauo s none et f°"""'"
request (value is ?
o More slots, values can be added in future 2| veluoisdonteare g il tion for each slots of
. . .. 3 value is yes { the current domains
o Can we avoid (detailed) retraining? 4 valuo is no e ees
. 5 value resides in usery slot action: 5., ’
o Use representation of the slot and value names 6| value rosides in systemt | Extract siot value or reference
7 refer previous states  ||domain using span-based method |~

wherever possible
o Convert domain-slot values into questions
m hotel-name: What is the name of the hotel?
o Context: User/system utterance based on slot
action



Scalable and Extensible Dialogue State Tracking

U, : Can you help me find some attractions in the east part of town?

§, : Definitely! My favorite place in the east is the Funky Fun House. It's
funky and fun!
U, : Can | have the number please?

§, : It's 01223304705. Do you need anything else?
U, : Yeah, | need a restaurant. They need to serve Indian food and be in
the same area as Funky Fun House.

§3 : There are 4 Indian restaurants in the area. Two are moderately
priced and two are expensive. Can | ask what price range you would like?
U; : | would prefer one in the moderate price range.

5, : May | suggest the Rajmahal located at 7 Barnwell Road Fen Ditton.
U, : Can | also have their phone number and postcode?

S5 : Sure, their phone number is 01223244955 and the postcode is
cb58rg. Is there anything else | could help you with?
Us : That is all | need.

Tum | Change | Domain | siot pair | Action| SI°tvalue | Match
0 1 at(tga.lgg?n Maea (039) east v
1 (0.%8) attraction | #7220 (o.gs) Crowe | Y
restaurant 5 Indian v
| o | |
area | (0.88) | /" attraction- |/
3 (0.%6) restaurant re?:)arilé;ant (0.%9) moderate v
4 (0.%7’) restaurant reﬁégﬁgnt (0.691) Rajmahal v
5 0 restaurant - - - v

(0.99)




Dial-M

® (Good quality response often contains cues

related to the ongoing dialog context (LM foss )
® |f not, then the response may become AL A
incoherent/random RoBERTa with LM head
® Proposed approach to check response quality: bos | uy [eou| .. [ups[eou| 4, [eoueos [sep [ ¢ [eos
o Mask important words from the response hoeeoagenaaes : : |
o From the context. we should be able to [Dialog Context (Dq)] [ Keyword masked utterance u; ] [Condition]
predict those words
® Take aresponse | K¢
: 1 1 .
® Mask important keywords 5= e S T > —logp(y|Detyiin g er) |
_ t| % t,j =
® Predict the masked keywords =1 7 vete, )
o Use standard high-quality denoising

Lower scores are better
models

® No re-learning for separate datasets

Suvodip Dey, Maunendra Sankar Desarkar: Dial-M: A Masking-based Framework for Dialogue Evaluation. SIGDIAL 2023.



Dial-M

Context
(D<¢)

“hey . where are you from ? i’'m from a
farm in Wisconsin™, “i love ice cream what
is your favorite ? mine is chocolate”, “mine
is mint chocolate chip”

Condition (¢¢)
(Persona)

my wife and kids are the best. my favorite
ice cream flavor is chocolate. i’ve three chil-
dren. i’m a plumber. i love going to the park
with my three children and my wife.

Response 1
Human Score
Dial-M Score

my three kids love mint chocolate chip !
Overall score: [5, 5, 5], Average: 5.0
0.1399

Response 2
Human Score
Dial-M Score

i like the color red . i like the color blue .
Overall score: [1, 2, 2], Average: 1.67
4.3131

Response 3
Human Score
Dial-M Score

i like chocolate chip cookies
Overall score: [3, 4, 4], Average: 3.67
2.4582

An example. Lower Dial-M score indicates better response

guality

Lower Dial-M scores indicate better
responses

Responses with higher human
scores get less score for the Dial-M
metric

Correlates with human scores



Conclusion

e Explainability builds trust
o Helps in debugging, and has other advantages
e Quality without explainability, for human-facing tasks is not adequate
e Generic and explainable methods are needed
o For policy making
o Response generation
o Evaluation
e Some initial approaches are proposed
e A |lot more need to be done
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Thank you.
Questions?

Maunendra Sankar Desarkar

Email: maunendra@cse.iith.ac.in
Website: https://people.iith.ac.in/maunendra/
Lab: https://nlip-lab.github.io/
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